Graphic Organizer/Worksheet


Collection of Chemistry Worksheets. Topics include the atom, formulas and equations, physical properties of matter, periodic table, chemical bonding, properties of solutions, kinetics and equilibrium, acids, bases and salts, and oxidation and reduction.


  • Science > General

Education Levels:

  • Grade 6
  • Grade 7
  • Grade 8
  • Grade 9
  • Grade 10
  • Grade 11
  • Grade 12


Collection worksheets Chemistry atoms formulas equations matter periodic table bonding solutions kinetics acids bases oxidation reduction



Access Privileges:

Public - Available to anyone

License Deed:

Creative Commons Attribution 3.0


Update Standards?

SCI.9-12.C.6.3.2.a: Science

use powers often to represent a large range of values for a physical quantity, e.g., pH scale

SCI.9-12.C.4.3.1.a: Science

The modern model of the atom has evolved over a long period of time through the work of many scientists.

SCI.9-12.C.4.3.1.b: Science

Each atom has a nucleus, with an overall positive charge, surrounded by negatively charged electrons.

SCI.9-12.C.4.3.1.c: Science

Subatomic particles contained in the nucleus include protons and neutrons.

SCI.9-12.C.4.3.1.d: Science

The proton is positively charged, and the neutron has no charge. The electron is negatively charged.

SCI.9-12.C.4.3.1.e: Science

Protons and electrons have equal but opposite charges. The number of protons equals the number of electrons in an atom.

SCI.9-12.C.4.3.1.f: Science

The mass of each proton and each neutron is approximately equal to one atomic mass unit. An electron is much less massive than a proton or a neutron.

SCI.9-12.C.4.3.1.g: Science

The number of protons in an atom (atomic number) identifies the element. The sum of the protons and neutrons in an atom (mass number) identifies an isotope. Common notations that represent isotopes include: 14 C, 14 C, carbon-14, C-14. 6

SCI.9-12.C.4.3.1.h: Science

In the wave-mechanical model (electron cloud model) the electrons are in orbitals, which are defined as the regions of the most probable electron location (ground state).

SCI.9-12.C.4.3.1.i: Science

Each electron in an atom has its own distinct amount of energy.

SCI.9-12.C.4.3.1.j: Science

When an electron in an atom gains a specific amount of energy, the electron is at a higher energy state (excited state).

SCI.9-12.C.4.3.1.k: Science

When an electron returns from a higher energy state to a lower energy state, a specific amount of energy is emitted. This emitted energy can be used to identify an element.

SCI.9-12.C.4.3.1.l: Science

The outermost electrons in an atom are called the valence electrons. In general, the number of valence electrons affects the chemical properties of an element.

SCI.9-12.C.4.3.1.m: Science

Atoms of an element that contain the same number of protons but a different number of neutrons are called isotopes of that element.

SCI.9-12.C.4.3.1.n: Science

The average atomic mass of an element is the weighted average of the masses of its naturally occurring isotopes.

SCI.9-12.C.4.3.1.o: Science

Stability of an isotope is based on the ratio of neutrons and protons in its nucleus. Although most nuclei are stable, some are unstable and spontaneously decay, emitting radiation.

SCI.9-12.C.4.3.1.p: Science

Spontaneous decay can involve the release of alpha particles, beta particles, positrons, and/ or gamma radiation from the nucleus of an unstable isotope. These emissions differ in mass, charge, ionizing power, and penetrating power.

SCI.9-12.C.4.3.1.q: Science

Matter is classified as a pure substance or as a mixture of substances.

SCI.9-12.C.4.3.1.r: Science

A pure substance (element or compound) has a constant composition and constant properties throughout a given sample, and from sample to sample.

SCI.9-12.C.4.3.1.s: Science

Mixtures are composed of two or more different substances that can be separated by physical means. When different substances are mixed together, a homogeneous or heterogeneous mixture is formed.

SCI.9-12.C.4.3.1.t: Science

The proportions of components in a mixture can be varied. Each component in a mixture retains its original properties.

SCI.9-12.C.4.3.1.u: Science

Elements are substances that are composed of atoms that have the same atomic number. Elements cannot be broken down by chemical change.

SCI.9-12.C.4.3.1.v: Science

Elements can be classified by their properties and located on the Periodic Table as metals, nonmetals, metalloids (B, Si, Ge, As, Sb, Te), and noble gases.

SCI.9-12.C.4.3.1.w: Science

Elements can be differentiated by physical properties. Physical properties of substances, such as density, conductivity, malleability, solubility, and hardness, differ among elements.

SCI.9-12.C.4.3.1.x: Science

Elements can also be differentiated by chemical properties. Chemical properties describe how an element behaves during a chemical reaction.

SCI.9-12.C.4.3.1.y: Science

The placement or location of an element on the Periodic Table gives an indication of the physical and chemical properties of that element. The elements on the Periodic Table are arranged in order of increasing atomic number.

SCI.9-12.C.4.3.1.z: Science

For Groups 1, 2, and 13-18 on the Periodic Table, elements within the same group have the same number of valence electrons (helium is an exception) and therefore similar chemical properties.

SCI.9-12.C.4.3.1.aa: Science

The succession of elements within the same group demonstrates characteristic trends: differences in atomic radius, ionic radius, electronegativity, first ionization energy, metallic/ nonmetallic properties.

SCI.9-12.C.4.3.1.ab: Science

The succession of elements across the same period demonstrates characteristic trends: differences in atomic radius, ionic radius, electronegativity, first ionization energy, metallic/ nonmetallic properties.

SCI.9-12.C.4.3.1.ac: Science

A compound is a substance composed of two or more different elements that are chemically combined in a fixed proportion. A chemical compound can be broken down by chemical means. A chemical compound can be represented by a specific chemical formula and assigned a name based on the IUPAC system.

SCI.9-12.C.4.3.1.ad: Science

Compounds can be differentiated by their physical and chemical properties.

SCI.9-12.C.4.3.1.ae: Science

Types of chemical formulas include empirical, molecular, and structural.

SCI.9-12.C.4.3.1.af: Science

Organic compounds contain carbon atoms, which bond to one another in chains, rings, and networks to form a variety of structures. Organic compounds can be named using the IUPAC system.

SCI.9-12.C.4.3.1.ag: Science

Hydrocarbons are compounds that contain only carbon and hydrogen. Saturated hydrocarbons contain only single carbon-carbon bonds. Unsaturated hydrocarbons contain at least one multiple carbon-carbon bond.

SCI.9-12.C.4.3.1.ah: Science

Organic acids, alcohols, esters, aldehydes, ketones, ethers, halides, amines, amides, and amino acids are categories of organic compounds that differ in their structures. Functional groups impart distinctive physical and chemical properties to organic compounds.

SCI.9-12.C.4.3.1.ai: Science

Isomers of organic compounds have the same molecular formula, but different structures and properties.

SCI.9-12.C.4.3.1.aj: Science

The structure and arrangement of particles and their interactions determine the physical state of a substance at a given temperature and pressure.

SCI.9-12.C.4.3.1.ak: Science

The three phases of matter (solids, liquids, and gases) have different properties.

SCI.9-12.C.4.3.1.al: Science

Entropy is a measure of the randomness or disorder of a system. A system with greater disorder has greater entropy.

SCI.9-12.C.4.3.1.am: Science

Systems in nature tend to undergo changes toward lower energy and higher entropy.

SCI.9-12.C.4.3.1.an: Science

Differences in properties such as density, particle size, molecular polarity, boiling and freezing points, and solubility permit physical separation of the components of the mixture.

SCI.9-12.C.4.3.1.ao: Science

A solution is a homogeneous mixture of a solute dissolved in a solvent. The solubility of a solute in a given amount of solvent is dependent on the temperature, the pressure, and the chemical natures of the solute and solvent.

SCI.9-12.C.4.3.1.ap: Science

The concentration of a solution may be expressed in molarity (M), percent by volume, percent by mass, or parts per million (ppm).

SCI.9-12.C.4.3.1.aq: Science

The addition of a nonvolatile solute to a solvent causes the boiling point of the solvent to increase and the freezing point of the solvent to decrease. The greater the concentration of solute particles, the greater the effect.

SCI.9-12.C.4.3.1.ar: Science

An electrolyte is a substance which, when dissolved in water, forms a solution capable of conducting an electric current. The ability of a solution to conduct an electric current depends on the concentration of ions.

SCI.9-12.C.4.3.1.as: Science

The acidity or alkalinity of an aqueous solution can be measured by its pH value. The relative level of acidity or alkalinity of these solutions can be shown by using indicators.

SCI.9-12.C.4.3.1.at: Science

On the pH scale, each decrease of one unit of pH represents a tenfold increase in hydronium ion concentration.

SCI.9-12.C.4.3.1.au: Science

Behavior of many acids and bases can be explained by the Arrhenius theory. Arrhenius acids and bases are electrolytes.

SCI.9-12.C.4.3.1.av: Science

Arrhenius acids yield H + (aq), hydrogen ion as the only positive ion in an aqueous solution. The hydrogen ion may also be written as H 3 O + (aq), hydronium ion.

SCI.9-12.C.4.3.1.aw: Science

Arrhenius bases yield OH -(aq), hydroxide ion as the only negative ion in an aqueous solution.

SCI.9-12.C.4.3.1.ax: Science

In the process of neutralization, an Arrhenius acid and an Arrhenius base react to form a salt and water.

SCI.9-12.C.4.3.1.ay: Science

There are alternate acid-base theories. One theory states that an acid is an H + donor and a base is an H + acceptor.

SCI.9-12.C.4.3.1.az: Science

Titration is a laboratory process in which a volume of a solution of known concentration is used to determine the concentration of another solution.

SCI.9-12.C.4.3.2.a: Science

A physical change results in the rearrangement of existing particles in a substance. A chemical change results in the formation of different substances with changed properties.

SCI.9-12.C.4.3.2.b: Science

Types of chemical reactions include synthesis, decomposition, single replacement, and double replacement.

SCI.9-12.C.4.3.2.c: Science

Types of organic reactions include addition, substitution, polymerization, esterification, fermentation, saponification, and combustion.

SCI.9-12.C.4.3.2.d: Science

An oxidation-reduction (redox) reaction involves the transfer of electrons (e -).

SCI.9-12.C.4.3.2.e: Science

Reduction is the gain of electrons.

SCI.9-12.C.4.3.2.f: Science

A half-reaction can be written to represent reduction.

SCI.9-12.C.4.3.2.g: Science

Oxidation is the loss of electrons.

SCI.9-12.C.4.3.2.h: Science

A half-reaction can be written to represent oxidation.

SCI.9-12.C.4.3.2.i: Science

Oxidation numbers (states) can be assigned to atoms and ions. Changes in oxidation numbers indicate that oxidation and reduction have occurred.

SCI.9-12.C.4.3.2.j: Science

An electrochemical cell can be either voltaic or electrolytic. In an electrochemical cell, oxidation occurs at the anode and reduction at the cathode.

SCI.9-12.C.4.3.2.k: Science

A voltaic cell spontaneously converts chemical energy to electrical energy.

SCI.9-12.C.4.3.2.l: Science

An electrolytic cell requires electrical energy to produce a chemical change. This process is known as electrolysis.

SCI.9-12.C.4.3.3.a: Science

In all chemical reactions there is a conservation of mass, energy, and charge.

SCI.9-12.C.4.3.3.b: Science

In a redox reaction the number of electrons lost is equal to the number of electrons gained.

SCI.9-12.C.4.3.3.c: Science

A balanced chemical equation represents conservation of atoms. The coefficients in a balanced chemical equation can be used to determine mole ratios in the reaction.

SCI.9-12.C.4.3.3.d: Science

The empirical formula of a compound is the simplest whole-number ratio of atoms of the elements in a compound. It may be different from the molecular formula, which is the actual ratio of atoms in a molecule of that compound.

SCI.9-12.C.4.3.3.e: Science

The formula mass of a substance is the sum of the atomic masses of its atoms. The molar mass (gram-formula mass) of a substance equals one mole of that substance.

SCI.9-12.C.4.3.3.f: Science

The percent composition by mass of each element in a compound can be calculated mathematically.

SCI.9-12.C.4.3.4.a: Science

The concept of an ideal gas is a model to explain the behavior of gases. A real gas is most like an ideal gas when the real gas is at low pressure and high temperature.

SCI.9-12.C.4.3.4.b.1: Science

are in random, constant, straight-line motion.

SCI.9-12.C.4.3.4.b.2: Science

are separated by great distances relative to their size; the volume of the gas particles is considered negligible.

SCI.9-12.C.4.3.4.b.3: Science

have no attractive forces between them.

SCI.9-12.C.4.3.4.b.4: Science

have collisions that may result in a transfer of energy between gas particles, but the total energy of the system remains constant.

SCI.9-12.C.4.3.4.c: Science

Kinetic molecular theory describes the relationships of pressure, volume, temperature, velocity, and frequency and force of collisions among gas molecules.

SCI.9-12.C.4.3.4.d: Science

Collision theory states that a reaction is most likely to occur if reactant particles collide with the proper energy and orientation.

SCI.9-12.C.4.3.4.e: Science

Equal volumes of gases at the same temperature and pressure contain an equal number of particles.

SCI.9-12.C.4.3.4.f: Science

The rate of a chemical reaction depends on several factors: temperature, concentration, nature of the reactants, surface area, and the presence of a catalyst.

SCI.9-12.C.4.3.4.g: Science

A catalyst provides an alternate reaction pathway, which has a lower activation energy than an uncatalyzed reaction.

SCI.9-12.C.4.3.4.h: Science

Some chemical and physical changes can reach equilibrium.

SCI.9-12.C.4.3.4.i: Science

At equilibrium the rate of the forward reaction equals the rate of the reverse reaction. The measurable quantities of reactants and products remain constant at equilibrium.

SCI.9-12.C.4.3.4.j: Science

LeChatelier's principle can be used to predict the effect of stress (change in pressure, volume, concentration, and temperature) on a system at equilibrium.

SCI.9-12.C.4.5.2.a.1: Science

transferred from one atom to another (ionic)

SCI.9-12.C.4.5.2.a.2: Science

shared between atoms (covalent)

SCI.9-12.C.4.5.2.a.3: Science

mobile within a metal (metallic)

SCI.9-12.C.4.5.2.b: Science

Atoms attain a stable valence electron configuration by bonding with other atoms. Noble gases have stable valence configurations and tend not to bond.

SCI.9-12.C.4.5.2.c: Science

When an atom gains one or more electrons, it becomes a negative ion and its radius increases. When an atom loses one or more electrons, it becomes a positive ion and its radius decreases.

SCI.9-12.C.4.5.2.d: Science

Electron-dot diagrams (Lewis structures) can represent the valence electron arrangement in elements, compounds, and ions.

SCI.9-12.C.4.5.2.e: Science

In a multiple covalent bond, more than one pair of electrons are shared between two atoms. Unsaturated organic compounds contain at least one double or triple bond.

SCI.9-12.C.4.5.2.f: Science

Some elements exist in two or more forms in the same phase. These forms differ in their molecular or crystal structure, and hence in their properties.

SCI.9-12.C.4.5.2.g: Science

Two major categories of compounds are ionic and molecular (covalent) compounds.

SCI.9-12.C.4.5.2.h: Science

Metals tend to react with nonmetals to form ionic compounds. Nonmetals tend to react with other nonmetals to form molecular (covalent) compounds. Ionic compounds containing polyatomic ions have both ionic and covalent bonding.

SCI.9-12.C.4.5.2.i: Science

When a bond is broken, energy is absorbed. When a bond is formed, energy is released.

SCI.9-12.C.4.5.2.j: Science

Electronegativity indicates how strongly an atom of an element attracts electrons in a chemical bond. Electronegativity values are assigned according to arbitrary scales.

SCI.9-12.C.4.5.2.k: Science

The electronegativity difference between two bonded atoms is used to assess the degree of polarity in the bond.

SCI.9-12.C.4.5.2.l: Science

Molecular polarity can be determined by the shape of the molecule and distribution of charge. Symmetrical (nonpolar) molecules include CO2 , CH4 , and diatomic elements. Asymmetrical (polar) molecules include HCl, NH3 , and H2 O.

SCI.9-12.C.4.5.2.m: Science

Intermolecular forces created by the unequal distribution of charge result in varying degrees of attraction between molecules. Hydrogen bonding is an example of a strong intermolecular force.

SCI.9-12.C.4.5.2.n: Science

Physical properties of substances can be explained in terms of chemical bonds and intermolecular forces. These properties include conductivity, malleability, solubility, hardness, melting point, and boiling point.

SCI.9-12.C.4.5.3.a: Science

A change in the nucleus of an atom that converts it from one element to another is called transmutation. This can occur naturally or can be induced by the bombardment of the nucleus with high-energy particles.

SCI.9-12.C.4.5.3.b: Science

Energy released in a nuclear reaction (fission or fusion) comes from the fractional amount of mass that is converted into energy. Nuclear changes convert matter into energy.

SCI.9-12.C.4.5.3.c: Science

Energy released during nuclear reactions is much greater than the energy released during chemical reactions.
Curriki Rating
'NR' - This resource has not been rated
'NR' - This resource has not been rated

This resource has not yet been reviewed.

Not Rated Yet.

Non-profit Tax ID # 203478467