Type:

Other

Description:

There are ... rules mapping a set of ... factors onto a binary outcome. This Demonstration shows how a set of rules can be generated in which the mappings are correlated with each other. This process is useful in generating, among other things, synthetic parameterized judiciaries, which can be compared to real-world judicial bodies. You choose the number of factors the "judges" collectively take into account in determining how to decide a case. You choose the number of "judges" on the "court". These parameters generate a set of random and uncorrelated rules. You then correlate the rules by choosing (a) the number of clusters into which the judges fall, (b) the degree of correlation of rules within each cluster, and (c) the method by which correlation is to occur. When the "mean" method is selected, the system responds by moving the decision rules within the clusters toward the mean decision rule within that cluster. When the "leader" method is selected, the system responds by moving the decision rules within the clusters toward the first decision rule within that cluster. You can then visualize the results in one of three ways. With the "distance matrix" view, you see the Hamming distance between all of the judges. Green dividers show the clustering of the judges. With the "binary rules" view, you see arrays of the raw decision rules themselves, with green dividers again delineating the different clusters. With the "decision tree" view, you can use the advanced controls to see visualizations of the decision trees of each of the judges.

Subjects:

    Education Levels:

      Keywords:

      EUN,LOM,LRE4,work-cmr-id:397727,http://demonstrations.wolfram.com:http://demonstrations.wolfram.com/CorrelatedBinaryDecisionRules/,ilox,learning resource exchange,LRE metadata application profile,LRE

      Language:

      Access Privileges:

      Public - Available to anyone

      License Deed:

      Creative Commons Attribution 3.0

      Collections:

      None
      This resource has not yet been aligned.
      Curriki Rating
      'NR' - This resource has not been rated
      NR
      'NR' - This resource has not been rated

      This resource has not yet been reviewed.

      Not Rated Yet.

      Non-profit Tax ID # 203478467