The Daisyworld model created by Andrew Watson and James Lovelock (1983, Tellus, v. 35B, p. 284-289) is a wonderful example of a self-regulating system incorporating positive and negative feedbacks. The model consists of a planet on which black and white daisies are growing. The growth of these daisies is governed by a parabolic shaped growth function regulated by planetary temperature and is set to zero for temperatures less than 5 ºC or greater than 40 ºC and optimized at 22.5 ºC. The model explores the effect of a steadily increasing solar luminosity on the growth of daisies and the resulting planetary temperature. The growth function for the daisies allows them to modulate the planet's temperature for many years, warming it early on as black daisies grow, and cooling it later as white daisies grow. Eventually, the solar luminosity increases beyond the daisies' capability to modulate the temperature and they die out, leading to a rapid rise in the planetary temperature. Students read Watson and Lovelock's original paper, and then use STELLA to create their own Daisyworld model with which they can experiment. Experiments include changing the albedos of the daisies, changing their death rates, and changing the rate at which energy is conducted from one part of the planet to another. In all cases, students keep track of daisy populations and of planetary temperature over time.


    Education Levels:

    • Grade 1
    • Grade 2
    • Grade 3
    • Grade 4
    • Grade 5
    • Grade 6
    • Grade 7
    • Grade 8
    • Grade 9
    • Grade 10
    • Grade 11
    • Grade 12


    oai:nsdl.org:2200/20100502201113899T,Higher Education,NSDL_SetSpec_380601,Undergraduate (Upper Division),NSDL,Solar radiation,Vocational/Professional Development Education,Climate sensitivity and feedbacks,Space Science



    Access Privileges:

    Public - Available to anyone

    License Deed:

    Creative Commons Attribution Non-Commercial Share Alike


    This resource has not yet been aligned.
    Curriki Rating
    'NR' - This resource has not been rated
    'NR' - This resource has not been rated

    This resource has not yet been reviewed.

    Not Rated Yet.

    Non-profit Tax ID # 203478467