By folding a square piece of paper of side length one, we can divide some of the edges of the square into rational lengths. This Demonstration shows two of the methods (known as Haga's first and third theorems) that focus on folding to touch the midpoint of the upper side of the square. By dragging the sliders to the right and back the two steps of each folding (step 1 is the same for both) can be performed in 3D. The final ratios can also be seen to lead to interesting constructions. For instance, the first folding shows how to trisect a segment into three parts using no tools! Also, we we can construct Pythagorean 3-4-5 triangles (that is, right triangles in which the ratio of their sides is in the proportion 3:4:5) with the same ease; see if you can spot them!


    Education Levels:


      EUN,LOM,LRE4,work-cmr-id:397291,http://demonstrations.wolfram.com:http://demonstrations.wolfram.com/DividingSegmentsByOrigami/,ilox,learning resource exchange,LRE metadata application profile,LRE


      Access Privileges:

      Public - Available to anyone

      License Deed:

      Creative Commons Attribution 3.0


      This resource has not yet been aligned.
      Curriki Rating
      'NR' - This resource has not been rated
      'NR' - This resource has not been rated

      This resource has not yet been reviewed.

      Not Rated Yet.

      Non-profit Tax ID # 203478467