Type:

Other

Description:

A 10,000 kg artificial satellite is initially rotating around Earth in a circular orbit. Then a force, such as that provided by a rocket attached to the satellite, acts on it for a certain amount of time. We assume that the force is always directed along the line connecting the centers of gravity of Earth and the satellite, it has a constant magnitude, and it is directed either toward or away from Earth. During this time the satellite exits its original orbit and follows a path that is determined by Earth's gravitational force on the satellite, displayed as a red arrow, and the force of the rocket, displayed as a black arrow. When the force of the rocket is turned off, the satellite is then in a new orbit that is either elliptical or hyperbolic. Depending on the strength and the duration of the action of the force of the rocket, the new orbit of the satellite may cross Earth's surface causing the satellite to crash on the Earth surface. This may happen when the force of the rocket is pointing toward Earth or away from Earth.

Subjects:

    Education Levels:

      Keywords:

      EUN,LOM,LRE4,work-cmr-id:262462,http://demonstrations.wolfram.com:http://demonstrations.wolfram.com/EffectsOfAForceOnTheOrbitOfAnArtificialSatellite/,ilox,learning resource exchange,LRE metadata application profile,LRE

      Language:

      Access Privileges:

      Public - Available to anyone

      License Deed:

      Creative Commons Attribution 3.0

      Collections:

      None
      This resource has not yet been aligned.
      Curriki Rating
      'NR' - This resource has not been rated
      NR
      'NR' - This resource has not been rated

      This resource has not yet been reviewed.

      Not Rated Yet.

      Non-profit Tax ID # 203478467