Type:

Interactive, Article/Essay, Diagram/Illustration/Map, Game, Graphic Organizer/Worksheet, Lesson Plan, Table/Graph/Chart, Manual

Description:

Collection of Resources on Global Warming. Including Presentations, Webquests, labs, projects, articles and worksheets

Subjects:

  • Information & Media Literacy > General
  • Science > General

Education Levels:

  • Grade 6
  • Grade 7
  • Grade 8
  • Grade 9
  • Grade 10

Keywords:

Global Warming collection Greenhouse Gases Debate Biology

Language:

English

Access Privileges:

Public - Available to anyone

License Deed:

Creative Commons Attribution 3.0

Collections:

None
Update Standards?

SCI.9-12.L.1.1.1.a: Science

Scientific explanations are built by combining evidence that can be observed with what people already know about the world.

SCI.9-12.L.1.1.1.b: Science

Learning about the historical development of scientific concepts or about individuals who have contributed to scientific knowledge provides a better understanding of scientific inquiry and the relationship between science and society.

SCI.9-12.L.1.1.1.c: Science

Science provides knowledge, but values are also essential to making effective and ethical decisions about the application of scientific knowledge.

SCI.9-12.L.1.1.2.a: Science

Inquiry involves asking questions and locating, interpreting, and processing information from a variety of sources.

SCI.9-12.L.1.1.2.b: Science

Inquiry involves making judgments about the reliability of the source and relevance of information.

SCI.9-12.L.1.1.3.a: Science

Scientific explanations are accepted when they are consistent with experimental and observational evidence and when they lead to accurate predictions.

SCI.9-12.L.1.1.3.b: Science

All scientific explanations are tentative and subject to change or improvement. Each new bit of evidence can create more questions than it answers. This leads to increasingly better understanding of how things work in the living world.

SCI.9-12.L.1.1.4.a: Science

Well-accepted theories are ones that are supported by different kinds of scientific investigations often involving the contributions of individuals from different disciplines.

SCI.9-12.L.1.2.1: Science

Devise ways of making observations to test proposed explanations.

SCI.9-12.L.1.2.2.a: Science

Development of a research plan involves researching background information and understanding the major concepts in the area being investigated. Recommendations for methodologies, use of technologies, proper equipment, and safety precautions should also be included.

SCI.9-12.L.1.2.3.a: Science

Hypotheses are predictions based upon both research and observation.

SCI.9-12.L.1.2.3.b: Science

Hypotheses are widely used in science for determining what data to collect and as a guide for interpreting the data.

SCI.9-12.L.1.2.3.c: Science

Development of a research plan for testing a hypothesis requires planning to avoid bias (e.g., repeated trials, large sample size, and objective data-collection techniques).

SCI.9-12.L.1.2.4: Science

Carry out a research plan for testing explanations, including selecting and developing techniques, acquiring and building apparatus, and recording observations as necessary.

SCI.9-12.L.1.3.1.a: Science

Interpretation of data leads to development of additional hypotheses, the formulation of generalizations, or explanations of natural phenomena.

SCI.9-12.L.1.3.2: Science

Apply statistical analysis techniques when appropriate to test if chance alone explains the results.

SCI.9-12.L.1.3.3: Science

Assess correspondence between the predicted result contained in the hypothesis and actual result, and reach a conclusion as to whether the explanation on which the prediction was based is supported.

SCI.9-12.L.1.3.4.a: Science

Hypotheses are valuable, even if they turn out not to be true, because they may lead to further investigation.

SCI.9-12.L.1.3.4.b: Science

Claims should be questioned if the data are based on samples that are very small, biased, or inadequately controlled or if the conclusions are based on the faulty, incomplete, or misleading use of numbers.

SCI.9-12.L.1.3.4.c: Science

Claims should be questioned if fact and opinion are intermingled, if adequate evidence is not cited, or if the conclusions do not follow logically from the evidence given.

SCI.9-12.L.1.3.5.a: Science

One assumption of science is that other individuals could arrive at the same explanation if they had access to similar evidence. Scientists make the results of their investigations public; they should describe the investigations in ways that enable others to repeat the investigations.

SCI.9-12.L.1.3.5.b: Science

Scientists use peer review to evaluate the results of scientific investigations and the explanations proposed by other scientists. They analyze the experimental procedures, examine the evidence, identify faulty reasoning, point out statements that go beyond the evidence, and suggest alternative explanations for the same observations.

SCI.9-12.L.4.6.1.a: Science

Energy flows through ecosystems in one direction, typically from the Sun, through photosynthetic organisms including green plants and algae, to herbivores to carnivores and decomposers.

SCI.9-12.L.4.6.1.b: Science

The atoms and molecules on the Earth cycle among the living and nonliving components of the biosphere. For example, carbon dioxide and water molecules used in photosynthesis to form energy-rich organic compounds are returned to the environment when the energy in these compounds is eventually released by cells. Continual input of energy from sunlight keeps the process going. This concept may be illustrated with an energy pyramid.

SCI.9-12.L.4.6.1.c: Science

The chemical elements, such as carbon, hydrogen, nitrogen, and oxygen, that make up the molecules of living things pass through food webs and are combined and recombined in different ways. At each link in a food web, some energy is stored in newly made structures but much is dissipated into the environment as heat.

SCI.9-12.L.4.6.1.d: Science

The number of organisms any habitat can support (carrying capacity) is limited by the available energy, water, oxygen, and minerals, and by the ability of ecosystems to recycle the residue of dead organisms through the activities of bacteria and fungi.

SCI.9-12.L.4.6.1.e: Science

In any particular environment, the growth and survival of organisms depend on the physical conditions including light intensity, temperature range, mineral availability, soil/rock type, and relative acidity (pH).

SCI.9-12.L.4.6.1.f: Science

Living organisms have the capacity to produce populations of unlimited size, but environments and resources are finite. This has profound effects on the interactions among organisms.

SCI.9-12.L.4.6.1.g: Science

Relationships between organisms may be negative, neutral, or positive. Some organisms may interact with one another in several ways. They may be in a producer/consumer, predator/prey, or parasite/host relationship; or one organism may cause disease in, scavenge, or decompose another.

SCI.9-12.L.4.6.2.a: Science

As a result of evolutionary processes, there is a diversity of organisms and roles in ecosystems. This diversity of species increases the chance that at least some will survive in the face of large environmental changes. Biodiversity increases the stability of the ecosystem.

SCI.9-12.L.4.6.2.b: Science

Biodiversity also ensures the availability of a rich variety of genetic material that may lead to future agricultural or medical discoveries with significant value to humankind. As diversity is lost, potential sources of these materials may be lost with it.

SCI.9-12.L.4.6.3.a: Science

The interrelationships and interdependencies of organisms affect the development of stable ecosystems.

SCI.9-12.L.4.6.3.b: Science

Through ecological succession, all ecosystems progress through a sequence of changes during which one ecological community modifies the environment, making it more suitable for another community. These long-term gradual changes result in the community reaching a point of stability that can last for hundreds or thousands of years.

SCI.9-12.L.4.6.3.c: Science

A stable ecosystem can be altered, either rapidly or slowly, through the activities of organisms (including humans), or through climatic changes or natural disasters. The altered ecosystem can usually recover through gradual changes back to a point of long- term stability.

SCI.9-12.L.4.7.1.a: Science

The Earth has finite resources; increasing human consumption of resources places stress on the natural processes that renew some resources and deplete those resources that cannot be renewed.

SCI.9-12.L.4.7.1.b: Science

Natural ecosystems provide an array of basic processes that affect humans. Those processes include but are not limited to: maintenance of the quality of the atmosphere, generation of soils, control of the water cycle, removal of wastes, energy flow, and recycling of nutrients. Humans are changing many of these basic processes and the changes may be detrimental.

SCI.9-12.L.4.7.1.c: Science

Human beings are part of the Earth's ecosystems. Human activities can, deliberately or inadvertently, alter the equilibrium in ecosystems. Humans modify ecosystems as a result of population growth, consumption, and technology. Human destruction of habitats through direct harvesting, pollution, atmospheric changes, and other factors is threatening current global stability, and if not addressed, ecosystems may be irreversibly affected.

SCI.9-12.L.4.7.2.a: Science

Human activities that degrade ecosystems result in a loss of diversity of the living and nonliving environment. For example, the influence of humans on other organisms occurs through land use and pollution. Land use decreases the space and resources available to other species, and pollution changes the chemical composition of air, soil, and water.

SCI.9-12.L.4.7.2.b: Science

When humans alter ecosystems either by adding or removing specific organisms, serious consequences may result. For example, planting large expanses of one crop reduces the biodiversity of the area.

SCI.9-12.L.4.7.2.c: Science

Industrialization brings an increased demand for and use of energy and other resources including fossil and nuclear fuels. This usage can have positive and negative effects on humans and ecosystems.

SCI.9-12.L.4.7.3.a: Science

Societies must decide on proposals which involve the introduction of new technologies. Individuals need to make decisions which will assess risks, costs, benefits, and trade-offs.

SCI.9-12.L.4.7.3.b: Science

The decisions of one generation both provide and limit the range of possibilities open to the next generation.
Curriki Rating
On a scale of 0 to 3
3
On a scale of 0 to 3

This resource was reviewed using the Curriki Review rubric and received an overall Curriki Review System rating of 3, as of 2016-09-01.

Component Ratings:


Standards Alignment: 3
Subject Matter: 3
Support Steaching: 3
Assessments Quality: 3
Interactivity Quality: 3
Instructional Quality: 3
Deeper Learning: 3

Reviewer Comments:


Subject Matter: Excellent diversity of instructional activities.
Interactivity Quality: Flash activities work effectively.

Not Rated Yet.

Non-profit Tax ID # 203478467