May 19, 2015

Independent, Conditional, and Mutually Exclusive EventsFreezy's Ice Cream Stand doesn't think it has enough information to decide if it should add Pumpernickel Brickel or Dandy Cotton Candy to its menu. Therefore, it conducts another poll of its customers. It finds that the probability that a customer will like both flavors is 0.33 and the probability that a customer will like the Cotton Candy flavor is 0.8. What is the probability a customer will like the Pumpernickel flavor?Lesson, videos, exercises, and text from CK-12. Additional resources available at this site.

- Mathematics > General
- Mathematics > Geometry

- Grade 9
- Grade 10

Make sense of problems and persevere in solving them.

Reason abstractly and quantitatively.

Construct viable arguments and critique the reasoning of others.

Model with mathematics.

Use appropriate tools strategically.

Attend to precision.

Look for and make use of structure.

Look for and express regularity in repeated reasoning.

Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent.

Understand the conditional probability of A given B as P(A and B)/P(B), and interpret independence of A and B as saying that the conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A is the same as the probability of B.