Chaotic motion in the vicinity of a moving quantum nodal point is studied in the framework of the de Broglie–Bohm trajectory method of quantum mechanics. Chaos emerges from the sequential interaction between the quantum path with the moving nodal point depending on the distance and the frequencies between the quantum particles and their initial positions [1]. Here, chaotic motion means the exponential divergence of initially neighboring trajectories. In a very special case (constant phase shift parameter: ... , ... ), the orbit of the nodal point is a circle with radius ... , with center at the origin. In most cases, the orbits of the nodal point are elliptical for different constant phase shifts. In the causal interpretation of quantum theory, the dynamics is strongly influenced by the initial distribution of the particles and the "quantum force" transmitted by the quantum potential. In this description, chaos arises because of the dynamics of the singularity of the quantum potential. At the nodal point, the quantum potential becomes very negative or approaches negative infinity, which keeps the particles from entering or passing through the nodal region. This could be interpreted as the effect that empty space, where the squared wavefunction is approximately zero, influences the motion of quantum particles via the quantum potential. The nodal point itself acts as an attractor or repeller. The motions of the quantum particles could be periodic, ergodic, or chaotic depending on the constant ... . There are some curves starting at the nodal point that form outward spirals [1]. If ... , there are no stable limit cycles for the paths of the quantum particles, as seen in the figure. In conclusion, moving nodal points or nodal lines are important for the appearance of chaos in the de Broglie–Bohm interpretation. This model could serve as another reference for the simplest chaotic causal trajectories [2]. The graphic shows the squared wavefunction or the quantum potential, the vector field of the velocities (gray arrows), the trajectories of the quantum particles (colored paths), and the local minima/nodal point (blue point). The orbit of the nodal point is displayed by a thick blue line.


    Education Levels:


      EUN,LOM,LRE4,work-cmr-id:398615,http://demonstrations.wolfram.com:http://demonstrations.wolfram.com/InfluenceOfAMovingNodalPointOnTheCausalTrajectoriesInAQuantu/,ilox,learning resource exchange,LRE metadata application profile,LRE


      Access Privileges:

      Public - Available to anyone

      License Deed:

      Creative Commons Attribution 3.0


      This resource has not yet been aligned.
      Curriki Rating
      'NR' - This resource has not been rated
      'NR' - This resource has not been rated

      This resource has not yet been reviewed.

      Not Rated Yet.

      Non-profit Tax ID # 203478467