November 11, 2016

This lesson is designed to introduce students to functions as rules and independent and dependent variables. The lesson provides links to discussions and activities that motivate the idea of a function as a machine as well as proper terminology when discussing functions. Finally, the lesson provides links to follow-up lessons designed for use in succession to the introduction of functions.

- Mathematics > General

- Grade 1
- Grade 2
- Grade 3
- Grade 4
- Grade 5
- Grade 6
- Grade 7
- Grade 8
- Grade 9
- Grade 10
- Grade 11
- Grade 12

Write and evaluate numerical expressions involving whole-number exponents.

Write expressions that record operations with numbers and with letters standing for numbers.

Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients.

Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form x = a, a = a, or a = b results (where a and b are different numbers).

Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output.

Interpret the equation y = mx + b as defining a linear function, whose graph is a straight line; give examples of functions that are not linear.

Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.

Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then f(x) denotes the output of f corresponding to the input x. The graph of f is the graph of the equation y = f(x).

Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).