Type:

Other

Description:

Eigenvector centrality is one method of computing the "centrality", or approximate importance, of each node in a graph. The assumption is that each node's centrality is the sum of the centrality values of the nodes that it is connected to. The nodes are drawn with a radius proportional to their centrality. The adjacency matrix and centrality matrix for the solution are shown. The centrality matrix is an eigenvector of the adjacency matrix such that all of its elements are positive.

Subjects:

    Education Levels:

      Keywords:

      EUN,LOM,LRE4,work-cmr-id:398472,http://demonstrations.wolfram.com:http://demonstrations.wolfram.com/NetworkCentralityUsingEigenvectors/,ilox,learning resource exchange,LRE metadata application profile,LRE

      Language:

      Access Privileges:

      Public - Available to anyone

      License Deed:

      Creative Commons Attribution 3.0

      Collections:

      None
      This resource has not yet been aligned.
      Curriki Rating
      'NR' - This resource has not been rated
      NR
      'NR' - This resource has not been rated

      This resource has not yet been reviewed.

      Not Rated Yet.

      Non-profit Tax ID # 203478467