Type:

Other

Description:

Experiments show that neutrinos initially created with a definite flavor (electron, muon, or tau) can be found with a different flavor after they travel far from the source. This is caused by neutrino oscillation. In the language of quantum physics, the states representing the three types of flavor do not have definite mass. Each of the mass eigenstates is a linear combination of the flavor states. The oscillation phenomenon depends on the parameters of the model, namely the mass differences of the mass eigenstates and the mixing parameters, from which the coefficients of the linear combination can be calculated. The plots show the probability of finding a 1 GeV neutrino in the different flavors as a function of the distance between the source and the detector. The fourth figure demonstrates the hierarchy of the neutrino masses and the flavor coefficients in each eigenstate.

Subjects:

    Education Levels:

      Keywords:

      EUN,LOM,LRE4,work-cmr-id:397094,http://demonstrations.wolfram.com:http://demonstrations.wolfram.com/NeutrinoOscillations/,ilox,learning resource exchange,LRE metadata application profile,LRE

      Language:

      Access Privileges:

      Public - Available to anyone

      License Deed:

      Creative Commons Attribution 3.0

      Collections:

      None
      This resource has not yet been aligned.
      Curriki Rating
      'NR' - This resource has not been rated
      NR
      'NR' - This resource has not been rated

      This resource has not yet been reviewed.

      Not Rated Yet.

      Non-profit Tax ID # 203478467