Type:

Other

Description:

This Demonstration plots an extended phase portrait for a system of two first-order homogeneous coupled equations and shows the eigenvalues and eigenvectors for the resulting system. You can vary any of the variables in the matrix to generate the solutions for stable and unstable systems. The eigenvectors are displayed both graphically and numerically. The following phenomena can be seen: stable and unstable saddle points, lines of equilibria, nodes, improper nodes, spiral points, sinks, nodal sinks, spiral sinks, saddles, sources, spiral sources, nodal sources, and centers.

Subjects:

    Education Levels:

      Keywords:

      EUN,LOM,LRE4,work-cmr-id:262478,http://demonstrations.wolfram.com:http://demonstrations.wolfram.com/PhasePortraitsEigenvectorsAndEigenvalues/,ilox,learning resource exchange,LRE metadata application profile,LRE

      Language:

      Access Privileges:

      Public - Available to anyone

      License Deed:

      Creative Commons Attribution 3.0

      Collections:

      None
      This resource has not yet been aligned.
      Curriki Rating
      'NR' - This resource has not been rated
      NR
      'NR' - This resource has not been rated

      This resource has not yet been reviewed.

      Not Rated Yet.

      Non-profit Tax ID # 203478467