Type:

Game, Graphic Organizer/Worksheet, Lesson Plan, Manual

Description:

This centers-based lesson on place value is designed for two-days of 45-minute lessons or one-day of a 90-minute lesson block. The lesson provides differentiated instruction using the H.O.P. Centers Framework. H.O.P. stands for Hands-On, Open-Ended, and Practice which are the themes for each of the three centers in the framework. Lesson structure is designed using brain research principles. In this lesson students will learn how to identify place value with a short engaging lesson, hands-on board game activity, practice writing about a word problem using place value, and engage in tiered practice of the concept.

Subjects:

  • Mathematics > General

Education Levels:

  • Grade 3
  • Grade 4
  • Grade 5

Keywords:

Place Value

Language:

English

Access Privileges:

Public - Available to anyone

License Deed:

Creative Commons Attribution 3.0
Update Standards?

MA.3.3-2.1: Mathematics

Compare whole-number quantities through 999,999 by using the terms is less than, is greater than, and is equal to and the symbols <, >, and =.

MA.3.3-2.2: Mathematics

Represent in word form whole numbers through nine hundred ninety-nine thousand.

MA.3.3-2.3: Mathematics

Apply an algorithm to add and subtract whole numbers fluently.

MA.3.3-2.4: Mathematics

Apply procedures to round any whole number to the nearest 10, 100, or 1,000.

MA.3.3-2.5: Mathematics

Understand fractions as parts of a whole.

MA.3.3-2.6: Mathematics

Represent fractions that are greater than or equal to 1.

MA.3.3-2.7: Mathematics

Recall basic multiplication facts through 12 x 12 and the corresponding division facts.

MA.3.3-2.8: Mathematics

Compare the inverse relationship between multiplication and division.

MA.3.3-2.9: Mathematics

Analyze the effect that adding, subtracting, or multiplying odd and/or even numbers has on the outcome.

MA.3.3-2.10: Mathematics

Generate strategies to multiply whole numbers by using one single-digit factor and one multi-digit factor.

MA.3.3-2.11: Mathematics

Use basic number combinations to compute related multiplication problems that involve multiples of 10.

MA.3.3-2.12: Mathematics

Analyze the magnitude of digits through 999,999 on the basis of their place value.

MA.3.3-3.1: Mathematics

Create numeric patterns that involve whole-number operations.

MA.3.3-3.2: Mathematics

Apply procedures to find missing numbers in numeric patterns that involve whole-number operations.

MA.3.3-3.3: Mathematics

Use symbols to represent an unknown quantity in a simple addition, subtraction, or multiplication equation.

MA.3.3-3.4: Mathematics

Illustrate situations that show change over time as increasing.

MA.5.1.5.1.A: Mathematics

use place value to read, write, compare, and order whole numbers through 999,999,999,999;

MA.5.1.5.1.B: Mathematics

use place value to read, write, compare, and order decimals through the thousandths place.

MA.5.1.A: Mathematics

use place value to read, write, compare, and order whole numbers through the 999,999,999,999; and

MA.5.1.B: Mathematics

use place value to read, write, compare, and order decimals through the thousandths place.

: Mathematics

Interpret a multiplication equation as a comparison, e.g., interpret 35 = 5 × 7 as a statement that 35 is 5 times as many as 7 and 7 times as many as 5. Represent verbal statements of multiplicative comparisons as multiplication equations.

: Mathematics

Multiply or divide to solve word problems involving multiplicative comparison, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem, distinguishing multiplicative comparison from additive comparison.

: Mathematics

Solve multistep word problems posed with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding.

: Mathematics

Find all factor pairs for a whole number in the range 1-100. Recognize that a whole number is a multiple of each of its factors. Determine whether a given whole number in the range 1-100 is a multiple of a given one-digit number. Determine whether a given whole number in the range 1-100 is prime or composite.

: Mathematics

Generate a number or shape pattern that follows a given rule. Identify apparent features of the pattern that were not explicit in the rule itself.

: Mathematics

Recognize that in a multi-digit whole number, a digit in one place represents ten times what it represents in the place to its right.

: Mathematics

Read and write multi-digit whole numbers using base-ten numerals, number names, and expanded form. Compare two multi-digit numbers based on meanings of the digits in each place, using >, =, and < symbols to record the results of comparisons.

: Mathematics

Use place value understanding to round multi-digit whole numbers to any place.

: Mathematics

Fluently add and subtract multi-digit whole numbers using the standard algorithm.

: Mathematics

Multiply a whole number of up to four digits by a one-digit whole number, and multiply two two-digit numbers, using strategies based on place value and the properties of operations. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.

: Mathematics

Find whole-number quotients and remainders with up to four-digit dividends and one-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.

: Mathematics

Explain why a fraction a/b is equivalent to a fraction (n × a)/(n × b) by using visual fraction models, with attention to how the number and size of the parts differ even though the two fractions themselves are the same size. Use this principle to recognize and generate equivalent fractions.

: Mathematics

Compare two fractions with different numerators and different denominators, e.g., by creating common denominators or numerators, or by comparing to a benchmark fraction such as 1/2. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with symbols >, =, or <, and justify the conclusions, e.g., by using a visual fraction model.

: Mathematics

Understand addition and subtraction of fractions as joining and separating parts referring to the same whole.

: Mathematics

Decompose a fraction into a sum of fractions with the same denominator in more than one way, recording each decomposition by an equation. Justify decompositions, e.g., by using a visual fraction model.

: Mathematics

Add and subtract mixed numbers with like denominators, e.g., by replacing each mixed number with an equivalent fraction, and/or by using properties of operations and the relationship between addition and subtraction.

: Mathematics

Solve word problems involving addition and subtraction of fractions referring to the same whole and having like denominators, e.g., by using visual fraction models and equations to represent the problem.

: Mathematics

Understand a fraction a/b as a multiple of 1/b.

: Mathematics

Understand a multiple of a/b as a multiple of 1/b, and use this understanding to multiply a fraction by a whole number.

: Mathematics

Solve word problems involving multiplication of a fraction by a whole number, e.g., by using visual fraction models and equations to represent the problem.

: Mathematics

Express a fraction with denominator 10 as an equivalent fraction with denominator 100, and use this technique to add two fractions with respective denominators 10 and 100.

: Mathematics

Use decimal notation for fractions with denominators 10 or 100.

: Mathematics

Compare two decimals to hundredths by reasoning about their size. Recognize that comparisons are valid only when the two decimals refer to the same whole. Record the results of comparisons with the symbols >, =, or <, and justify the conclusions, e.g., by using a visual model.

: Mathematics

Know relative sizes of measurement units within one system of units including km, m, cm; kg, g; lb, oz.; l, ml; hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a two-column table.

: Mathematics

Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale.

: Mathematics

Apply the area and perimeter formulas for rectangles in real world and mathematical problems.

: Mathematics

Make a line plot to display a data set of measurements in fractions of a unit (1/2, 1/4, 1/8). Solve problems involving addition and subtraction of fractions by using information presented in line plots.

: Mathematics

An angle is measured with reference to a circle with its center at the common endpoint of the rays, by considering the fraction of the circular arc between the points where the two rays intersect the circle. An angle that turns through 1/360 of a circle is called a ?one-degree angle,? and can be used to measure angles.

: Mathematics

An angle that turns through n one-degree angles is said to have an angle measure of n degrees.

: Mathematics

Measure angles in whole-number degrees using a protractor. Sketch angles of specified measure.

: Mathematics

Recognize angle measure as additive. When an angle is decomposed into non-overlapping parts, the angle measure of the whole is the sum of the angle measures of the parts. Solve addition and subtraction problems to find unknown angles on a diagram in real world and mathematical problems, e.g., by using an equation with a symbol for the unknown angle measure.

: Mathematics

Draw points, lines, line segments, rays, angles (right, acute, obtuse), and perpendicular and parallel lines. Identify these in two-dimensional figures.

: Mathematics

Classify two-dimensional figures based on the presence or absence of parallel or perpendicular lines, or the presence or absence of angles of a specified size. Recognize right triangles as a category, and identify right triangles.

: Mathematics

Recognize a line of symmetry for a two-dimensional figure as a line across the figure such that the figure can be folded along the line into matching parts. Identify line-symmetric figures and draw lines of symmetry.
Curriki Rating
On a scale of 0 to 3
3
On a scale of 0 to 3

This resource was reviewed using the Curriki Review rubric and received an overall Curriki Review System rating of 3, as of -0001-11-30.

member-name
Karen Fasimpaur
May 6, 2011
member-name
Curriki Review System
July 21, 2009

This resource received a 2* rating because it is part of the larger resource Place Value, which received a rating of 2-Good in the Curriki Review System. You can learn more about this larger resource by reading its review and comments.

Non-profit Tax ID # 203478467