Type:

Other

Description:

Sensory transduction in the cochlea and vestibular labyrinth depends on fluid movements that deflect the hair bundles of mechanosensitive hair cells. Mechanosensitive transducer channels at the tip of the hair cell stereocilia allow K+ to flow into cells. This unusual process relies on ionic gradients unique to the inner ear. Linking genes to deafness in humans and mice has been instrumental in identifying the ion transport machinery important for hearing and balance. Morphological analysis is difficult in patients, but mouse models have helped to investigate phenotypes at different developmental time points. This review focuses on cellular ion transport mechanisms in the stria vascularis that generate the major electrochemical gradients for sensory transduction.

Subjects:

    Education Levels:

      Keywords:

      oai:nsdl.org:2200/20110722024214364T,Chemistry,NSDL,NSDL_SetSpec_BEN,Potassium,Content/background information,Sensory system,Life Science,Ear,Physiology

      Language:

      English

      Access Privileges:

      Public - Available to anyone

      License Deed:

      Creative Commons Attribution Non-Commercial Share Alike

      Collections:

      None
      This resource has not yet been aligned.
      Curriki Rating
      'NR' - This resource has not been rated
      NR
      'NR' - This resource has not been rated

      This resource has not yet been reviewed.

      Not Rated Yet.

      Non-profit Tax ID # 203478467