Type:

Description:

Moore's Law is a famous rule of thumb that says transistor density, and hence microprocessor performance, doubles approximately every eighteen months. While this trend has stood the test of time, many experts believe it will eventually grind to a halt when physical limitations prevent further miniaturization. Although this will likely not happen for twenty years or more, researchers are already looking at a potential solution.The concept of quantum computing has been around since the 1970's, but the science is still in its infancy. To learn about its profound implications, Liquid Logic (1) is a solid article with some remarkable insights into the technology. One of the most comprehensive sources on the Web is at the Centre for Quantum Computation (2) (last mentioned in the June 24, 1998 Scout Report). This has lots of introductory materials and tutorials that explain many of the basic concepts of quantum computing. The Centre's research efforts are also detailed on the site. Another good site for people new to the subject is the home page of Magiq Technologies (3). A very informative section about quantum information processing looks at some of the history of its development and its applications for the future. The company addresses some key issues in the frequently asked questions section, such as why research in this area could be so important. The Quantum Logic and Coherent Control Project Web site (4) presents extensive advanced theory about several experiments conducted with an rf (Paul) ion trap. The discussions are replete with equations and graphs, probably most suited for post graduate research. The Institute for Quantum Information (5) offers over 30 of its publications online, most of which are very recent. Because it is located at the California Institute of Technology, there are links to course home pages with lecture notes and solutions to problems. Users of the popular Mathematica software can add a powerful library of quantum computation functions with the free QuCalc package (6). The download site has documentation for the software and a few examples that include Mathematica code. Quantum Leap: Seize the Light (7) is an insightful article that discusses two recently published papers that address two promising methods of harnessing qubits (the fundamental unit of storage for quantum computation). This is necessary for the advancement of the technology, because the current methods are quite limited. EE Times hosts another article (8) about one of the newest breakthroughs in quantum information processing. Researchers at Harvard University have successfully transferred quantum information from a laser beam into and out of the spin state of rubidium atoms. The article considers the accomplishment and looks at what the group is planning next.

Subjects:

    Education Levels:

      Keywords:

      NSDL_SetSpec_internetscout,oai:nsdl.org:2200/20111120201441162T,NSDL

      Language:

      English

      Access Privileges:

      Public - Available to anyone

      License Deed:

      Creative Commons Attribution Non-Commercial Share Alike

      Collections:

      None
      This resource has not yet been aligned.
      Curriki Rating
      'NR' - This resource has not been rated
      NR
      'NR' - This resource has not been rated

      This resource has not yet been reviewed.

      Not Rated Yet.

      Non-profit Tax ID # 203478467