We know that glacial cycles produce changes in stream regimens downstream from the active ice margin, and that successive glacial cycles often result in separate (and usually lower) floodplains that become terraces following each cycle of stream incision. Using a suite of 4-5 glacio-fluvial terraces outside the mouth of Little PopoAgie Canyon on the east flank of Wyoming's Wind River Range, students do the following: (1) produce a map of the major terrace landforms, (2) observe the geomorphic characteristics of each map unit (this includes height above present stream, depth of fine overbank material above coarse bedload, and general weathering characteristics of the units, and whether the unit is a cut or fill terrace), and (3) measure the characteristics of soil profiles dug into each unit (including horizons Id's, depth and thickness of horizons, and carbonate morphology). Students use all this information to place the terrace units into the regional glacio-fluvial chronology by matching the relative age-data with the Pinedale/Bull Lake/Pre-Bull Lake regional sequence. Final project must include a graphic representation of stream heights that fit their interpretations of the regional glacio-fluvial stratigraphy.


    Education Levels:

    • Grade 1
    • Grade 2
    • Grade 3
    • Grade 4
    • Grade 5
    • Grade 6
    • Grade 7
    • Grade 8
    • Grade 9
    • Grade 10
    • Grade 11
    • Grade 12


    oai:nsdl.org:2200/20111219192402658T,NSDL_SetSpec_380601,Undergraduate (Upper Division),Field,Higher Education,Vocational/Professional Development Education,Geomorphology,Geoscience,NSDL



    Access Privileges:

    Public - Available to anyone

    License Deed:

    Creative Commons Attribution Non-Commercial Share Alike


    This resource has not yet been aligned.
    Curriki Rating
    'NR' - This resource has not been rated
    'NR' - This resource has not been rated

    This resource has not yet been reviewed.

    Not Rated Yet.

    Non-profit Tax ID # 203478467