Students often have difficulty understanding the relationship of O2 consumption, CO2 production, cardiac output, and distribution of ventilation-perfusion ratios in the lung to the final arterial blood gas composition. To overcome this difficulty, I have developed an interactive computer simulation of pulmonary gas exchange that is web based and allows the student to vary multiple factors simultaneously and observe the final effect on the arterial blood gas composition (available at www.siumed.edu/medicine/pulm/vqmodeling.htm). In this article, the underlying mathematics of the computer model is presented, as is the teaching strategy. The simulation is applied to a typical clinical case drawn from the intensive care unit to demonstrate the interdependence of the above factors as well as the less-appreciated importance of the Bohr and Haldane effects in clinical pulmonary medicine. The use of a computer to vary the many interacting factors involved in the arterial blood gas composition appeals to today's students and demonstrates the importance of basic physiology to the actual practice of medicine.


  • Education > General

Education Levels:


    Arterial,Perfusion,NSDL,NSDL_SetSpec_BEN,oai:nsdl.org:2200/20090203234740193T,Instructional Material,Simulation,Ventilation,Pulmonary gas exchange,Life Science,Computer-assisted learning,Education,Physics



    Access Privileges:

    Public - Available to anyone

    License Deed:

    Creative Commons Attribution Non-Commercial Share Alike


    This resource has not yet been aligned.
    Curriki Rating
    'NR' - This resource has not been rated
    'NR' - This resource has not been rated

    This resource has not yet been reviewed.

    Not Rated Yet.

    Non-profit Tax ID # 203478467