This combination lecture sequence / problem set activity takes a theoretical approach to the subject of conduction of heat. The lectures present Fourier's Law, its doubles (similar equations in other disciplines), and its use for measuring heat flow world-wide; derive, explain, and interpret the diffusion equation; discuss simple (1-D) solutions whose relevance to the Earth is questioned; and perform a simple scaling of the equation to obtain an approximate formula for cooling time. The problem set provides 'hands-on' experience with calculating the magnitude of heat flow, determining heat flow from temperature observations, and estimating cooling time for magma bodies. This activity gives the students essential knowledge about the transmission of heat; a perspective on conduction versus convection within the Earth; and an appreciation for geologic time. By its end, the students should have greater confidence dealing with equations; an exposure to partial derivatives; and an appreciation of the value of a quantitative approach to Earth science problems. Addresses student fear of quantitative aspect and/or inadequate quantitative skills Uses geophysics to solve problems in other fields