This Demonstration shows the construction of the tight-binding Hamiltonian matrix for a periodic chain with ... sites within the Wannier representation. The Hamiltonian in second quantization form is given by ... , where ... and ... are the fermionic creation and destruction operators of electrons at each site ... , respectively. Periodic boundary conditions at chain ends are expressed as ... and ... . The tight-binding on-site energy parameter ϵ gives the on-diagonal matrix elements, the hopping parameter ... gives the off-diagonal matrix elements. Both ... and ... are expressed in electron-volts. This representation, unlike the reciprocal space-based Bloch representation, works in real space. However, physically, it is fully equivalent, since with ... sites one can sample ... ... -points in the reciprocal space of the first Brillouin zone (BZ). Thus the same energy eigenvalues are expected from exact diagonalization of the Hamiltonian matrix. The information about the ... quantum numbers ( ... or equivalently ... in the reduced BZ scheme) and the related ... -points ( ... with ... lattice parameter of the chain) can be extracted by performing a discrete Fourier transform on each of the obtained eigenvectors and subsequently by inspecting the frequency components with nonzero intensity. The electronic energy eigenvalues associated to the ... -points thus obtained are plotted and superimposed onto the analytical Bloch dispersion relation ... in order to show the full equivalence of the Wannier result with the one for the reciprocal space.


    Education Levels:


      EUN,LOM,LRE4,work-cmr-id:397892,http://demonstrations.wolfram.com:http://demonstrations.wolfram.com/WannierRepresentationForTightBindingHamiltonianOfAPeriodicCh/,ilox,learning resource exchange,LRE metadata application profile,LRE


      Access Privileges:

      Public - Available to anyone

      License Deed:

      Creative Commons Attribution 3.0


      This resource has not yet been aligned.
      Curriki Rating
      'NR' - This resource has not been rated
      'NR' - This resource has not been rated

      This resource has not yet been reviewed.

      Not Rated Yet.

      Non-profit Tax ID # 203478467